Lp error estimates for projection approximations

نویسندگان

  • Mario Ahues
  • Andrei Amosov
  • Alain Largillier
  • Olivier Titaud
چکیده

We provide an error estimate for the local mean projection approximation in L p([0, τ∗]) for p ∈ [1,+∞[, in terms of the regularity of the underlying grid, and we apply it to the corresponding projection approximation of weakly singular Fredholm integral equations of the second kind. © 2004 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations

It is shown that the Ritz projection onto spaces of piecewise linear finite elements is bounded in the Sobolev space, Wp\ for 2 <p < oo. This implies that for functions in W¿ n Wp the error in approximation behaves like 0(h) in Wx, for 2 <p =c oo, and like 0(h2) in Lp, for 2 *íp < oo. In all these cases the additional logarithmic factor previously included in error estimates for linear finite e...

متن کامل

$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles

‎In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle‎. ‎We prove optimal estimates for the mapping properties of the Bergman projection on these domains.

متن کامل

Functional a Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems

In this paper, we develop functional a posteriori error estimates for DG approximations of elliptic boundary-value problems. These estimates are based on a certain projection of DG approximations to the respective energy space and functional a posteriori estimates for conforming approximations (see [30, 31]). On these grounds we derive two-sided guaranteed and computable bounds for the errors i...

متن کامل

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

Error estimates for 3-d narrow finite elements

We obtain error estimates for finite element approximations of the lowest degree valid uniformly for a class of three-dimensional narrow elements. First, for the Lagrange interpolation we prove optimal error estimates, both in order and regularity, in Lp for p > 2. For p = 2 it is known that this result is not true. Applying extrapolation results we obtain an optimal order error estimate for fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2005